Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Landscape genetic connectivity in a riparian foundation tree is jointly driven by climatic gradients and river networks.

Identifieur interne : 002151 ( Main/Exploration ); précédent : 002150; suivant : 002152

Landscape genetic connectivity in a riparian foundation tree is jointly driven by climatic gradients and river networks.

Auteurs : Samuel A. Cushman ; Tamara Max ; Nashelly Meneses ; Luke M. Evans ; Sharon Ferrier ; Barbara Honchak ; Thomas G. Whitham ; Gerard J. Allan

Source :

RBID : pubmed:25154093

Descripteurs français

English descriptors

Abstract

Fremont cottonwood (Populus fremonti) is a foundation riparian tree species that drives community structure and ecosystem processes in southwestern U.S. ecosystems. Despite its ecological importance, little is known about the ecological and environmental processes that shape its genetic diversity, structure, and landscape connectivity. Here, we combined molecular analyses of 82 populations including 1312 individual trees dispersed over the species' geographical distribution. We reduced the data set to 40 populations and 743 individuals to eliminate admixture with a sibling species, and used multivariate restricted optimization and reciprocal causal modeling to evaluate the effects of river network connectivity and climatic gradients on gene flow. Our results confirmed the following: First, gene flow of Fremont cottonwood is jointly controlled by the connectivity of the river network and gradients of seasonal precipitation. Second, gene flow is facilitated by mid-sized to large rivers, and is resisted by small streams and terrestrial uplands, with resistance to gene flow decreasing with river size. Third, genetic differentiation increases with cumulative differences in winter and spring precipitation. Our results suggest that ongoing fragmentation of riparian habitats will lead to a loss of landscape-level genetic connectivity, leading to increased inbreeding and the concomitant loss of genetic diversity in a foundation species. These genetic effects will cascade to a much larger community of organisms, some of which are threatened and endangered.

DOI: 10.1890/13-1612.1
PubMed: 25154093


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Landscape genetic connectivity in a riparian foundation tree is jointly driven by climatic gradients and river networks.</title>
<author>
<name sortKey="Cushman, Samuel A" sort="Cushman, Samuel A" uniqKey="Cushman S" first="Samuel A" last="Cushman">Samuel A. Cushman</name>
</author>
<author>
<name sortKey="Max, Tamara" sort="Max, Tamara" uniqKey="Max T" first="Tamara" last="Max">Tamara Max</name>
</author>
<author>
<name sortKey="Meneses, Nashelly" sort="Meneses, Nashelly" uniqKey="Meneses N" first="Nashelly" last="Meneses">Nashelly Meneses</name>
</author>
<author>
<name sortKey="Evans, Luke M" sort="Evans, Luke M" uniqKey="Evans L" first="Luke M" last="Evans">Luke M. Evans</name>
</author>
<author>
<name sortKey="Ferrier, Sharon" sort="Ferrier, Sharon" uniqKey="Ferrier S" first="Sharon" last="Ferrier">Sharon Ferrier</name>
</author>
<author>
<name sortKey="Honchak, Barbara" sort="Honchak, Barbara" uniqKey="Honchak B" first="Barbara" last="Honchak">Barbara Honchak</name>
</author>
<author>
<name sortKey="Whitham, Thomas G" sort="Whitham, Thomas G" uniqKey="Whitham T" first="Thomas G" last="Whitham">Thomas G. Whitham</name>
</author>
<author>
<name sortKey="Allan, Gerard J" sort="Allan, Gerard J" uniqKey="Allan G" first="Gerard J" last="Allan">Gerard J. Allan</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25154093</idno>
<idno type="pmid">25154093</idno>
<idno type="doi">10.1890/13-1612.1</idno>
<idno type="wicri:Area/Main/Corpus">002036</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002036</idno>
<idno type="wicri:Area/Main/Curation">002036</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002036</idno>
<idno type="wicri:Area/Main/Exploration">002036</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Landscape genetic connectivity in a riparian foundation tree is jointly driven by climatic gradients and river networks.</title>
<author>
<name sortKey="Cushman, Samuel A" sort="Cushman, Samuel A" uniqKey="Cushman S" first="Samuel A" last="Cushman">Samuel A. Cushman</name>
</author>
<author>
<name sortKey="Max, Tamara" sort="Max, Tamara" uniqKey="Max T" first="Tamara" last="Max">Tamara Max</name>
</author>
<author>
<name sortKey="Meneses, Nashelly" sort="Meneses, Nashelly" uniqKey="Meneses N" first="Nashelly" last="Meneses">Nashelly Meneses</name>
</author>
<author>
<name sortKey="Evans, Luke M" sort="Evans, Luke M" uniqKey="Evans L" first="Luke M" last="Evans">Luke M. Evans</name>
</author>
<author>
<name sortKey="Ferrier, Sharon" sort="Ferrier, Sharon" uniqKey="Ferrier S" first="Sharon" last="Ferrier">Sharon Ferrier</name>
</author>
<author>
<name sortKey="Honchak, Barbara" sort="Honchak, Barbara" uniqKey="Honchak B" first="Barbara" last="Honchak">Barbara Honchak</name>
</author>
<author>
<name sortKey="Whitham, Thomas G" sort="Whitham, Thomas G" uniqKey="Whitham T" first="Thomas G" last="Whitham">Thomas G. Whitham</name>
</author>
<author>
<name sortKey="Allan, Gerard J" sort="Allan, Gerard J" uniqKey="Allan G" first="Gerard J" last="Allan">Gerard J. Allan</name>
</author>
</analytic>
<series>
<title level="j">Ecological applications : a publication of the Ecological Society of America</title>
<idno type="ISSN">1051-0761</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Ecosystem (MeSH)</term>
<term>Gene Flow (MeSH)</term>
<term>Rivers (MeSH)</term>
<term>Southwestern United States (MeSH)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (MeSH)</term>
<term>Flux des gènes (MeSH)</term>
<term>Rivières (MeSH)</term>
<term>Écosystème (MeSH)</term>
<term>États du Sud-Ouest des États-Unis (MeSH)</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ecosystem</term>
<term>Gene Flow</term>
<term>Rivers</term>
<term>Southwestern United States</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arbres</term>
<term>Flux des gènes</term>
<term>Rivières</term>
<term>Écosystème</term>
<term>États du Sud-Ouest des États-Unis</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Fremont cottonwood (Populus fremonti) is a foundation riparian tree species that drives community structure and ecosystem processes in southwestern U.S. ecosystems. Despite its ecological importance, little is known about the ecological and environmental processes that shape its genetic diversity, structure, and landscape connectivity. Here, we combined molecular analyses of 82 populations including 1312 individual trees dispersed over the species' geographical distribution. We reduced the data set to 40 populations and 743 individuals to eliminate admixture with a sibling species, and used multivariate restricted optimization and reciprocal causal modeling to evaluate the effects of river network connectivity and climatic gradients on gene flow. Our results confirmed the following: First, gene flow of Fremont cottonwood is jointly controlled by the connectivity of the river network and gradients of seasonal precipitation. Second, gene flow is facilitated by mid-sized to large rivers, and is resisted by small streams and terrestrial uplands, with resistance to gene flow decreasing with river size. Third, genetic differentiation increases with cumulative differences in winter and spring precipitation. Our results suggest that ongoing fragmentation of riparian habitats will lead to a loss of landscape-level genetic connectivity, leading to increased inbreeding and the concomitant loss of genetic diversity in a foundation species. These genetic effects will cascade to a much larger community of organisms, some of which are threatened and endangered.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" IndexingMethod="Curated" Owner="NLM">
<PMID Version="1">25154093</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>10</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>18</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">1051-0761</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>24</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Ecological applications : a publication of the Ecological Society of America</Title>
<ISOAbbreviation>Ecol Appl</ISOAbbreviation>
</Journal>
<ArticleTitle>Landscape genetic connectivity in a riparian foundation tree is jointly driven by climatic gradients and river networks.</ArticleTitle>
<Pagination>
<MedlinePgn>1000-14</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Fremont cottonwood (Populus fremonti) is a foundation riparian tree species that drives community structure and ecosystem processes in southwestern U.S. ecosystems. Despite its ecological importance, little is known about the ecological and environmental processes that shape its genetic diversity, structure, and landscape connectivity. Here, we combined molecular analyses of 82 populations including 1312 individual trees dispersed over the species' geographical distribution. We reduced the data set to 40 populations and 743 individuals to eliminate admixture with a sibling species, and used multivariate restricted optimization and reciprocal causal modeling to evaluate the effects of river network connectivity and climatic gradients on gene flow. Our results confirmed the following: First, gene flow of Fremont cottonwood is jointly controlled by the connectivity of the river network and gradients of seasonal precipitation. Second, gene flow is facilitated by mid-sized to large rivers, and is resisted by small streams and terrestrial uplands, with resistance to gene flow decreasing with river size. Third, genetic differentiation increases with cumulative differences in winter and spring precipitation. Our results suggest that ongoing fragmentation of riparian habitats will lead to a loss of landscape-level genetic connectivity, leading to increased inbreeding and the concomitant loss of genetic diversity in a foundation species. These genetic effects will cascade to a much larger community of organisms, some of which are threatened and endangered.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cushman</LastName>
<ForeName>Samuel A</ForeName>
<Initials>SA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Max</LastName>
<ForeName>Tamara</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Meneses</LastName>
<ForeName>Nashelly</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Evans</LastName>
<ForeName>Luke M</ForeName>
<Initials>LM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ferrier</LastName>
<ForeName>Sharon</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Honchak</LastName>
<ForeName>Barbara</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Whitham</LastName>
<ForeName>Thomas G</ForeName>
<Initials>TG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Allan</LastName>
<ForeName>Gerard J</ForeName>
<Initials>GJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Ecol Appl</MedlineTA>
<NlmUniqueID>9889808</NlmUniqueID>
<ISSNLinking>1051-0761</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051456" MajorTopicYN="Y">Gene Flow</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045483" MajorTopicYN="Y">Rivers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015206" MajorTopicYN="N">Southwestern United States</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="Y">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>10</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25154093</ArticleId>
<ArticleId IdType="doi">10.1890/13-1612.1</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Allan, Gerard J" sort="Allan, Gerard J" uniqKey="Allan G" first="Gerard J" last="Allan">Gerard J. Allan</name>
<name sortKey="Cushman, Samuel A" sort="Cushman, Samuel A" uniqKey="Cushman S" first="Samuel A" last="Cushman">Samuel A. Cushman</name>
<name sortKey="Evans, Luke M" sort="Evans, Luke M" uniqKey="Evans L" first="Luke M" last="Evans">Luke M. Evans</name>
<name sortKey="Ferrier, Sharon" sort="Ferrier, Sharon" uniqKey="Ferrier S" first="Sharon" last="Ferrier">Sharon Ferrier</name>
<name sortKey="Honchak, Barbara" sort="Honchak, Barbara" uniqKey="Honchak B" first="Barbara" last="Honchak">Barbara Honchak</name>
<name sortKey="Max, Tamara" sort="Max, Tamara" uniqKey="Max T" first="Tamara" last="Max">Tamara Max</name>
<name sortKey="Meneses, Nashelly" sort="Meneses, Nashelly" uniqKey="Meneses N" first="Nashelly" last="Meneses">Nashelly Meneses</name>
<name sortKey="Whitham, Thomas G" sort="Whitham, Thomas G" uniqKey="Whitham T" first="Thomas G" last="Whitham">Thomas G. Whitham</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002151 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002151 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25154093
   |texte=   Landscape genetic connectivity in a riparian foundation tree is jointly driven by climatic gradients and river networks.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25154093" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020